
Objective
This lab project dives into embedded ARM programming by managing GPIO
pins through various methods. Each method achieves the same effect, but
with different performance characteristics. Further, unique ARM architecture
optimizations such as conditional execution and barrel shifting are explored.

Implementation
Software
Building on the first lab, Lab 2 requires exploring the compiled assembly of the
project. To set up the debugging environment, several features were first enabled
in the simulator:

• Execution Profiling > Show Times: Used to measure CPU time for relevant
sections of the code

• C/C++ > Optimization > (O0|O3): Toggles compiler optimizations. Al-
though -O0 is measurably slower, it is useful for inspecting raw instructions
coherently before the compiler mangles the output for performance.

Once enabled, the debugger should provide output containing instructions along-
side the corresponding c code, notice the instructions with their respective
execution time:

Figure 1: Example of conditional execution through a jump table

Hardware
The project requires access to the GPIO pins of the board for LED access, the
SysTick implementation for introducing necessary delay, as well as the LCD
for debugging purposes. The user manual for the LPC17xx chip was heavily
consulted, for gathering memory addresses useful for programming I/O, and
configuring the SysTick timer to provide useful interrupts.

Assignment
The program can be logically considered as a small state machine, that is
configured to change state every 500ms. Each state represents one of the three

1

methods of accessing GPIO pins, using its execution time to toggle an individual
LED on GPIO ports 1 and 2.

The main() function in this program is only used for chip configuration, only
running a few lines of code before looping indefinitely. After initializing the LED
ports, the SysTick timer is configured using the internal clock, which will run
its interrupt handler periodically. This handler callback function is delegated
the actual logic of the program, which will run as the main thread is looping
through no-ops. The SysTick_Handler() function is used to implement the
state transitions: it is designed to run each millisecond, but will accumulate a
configured value of ticks before actually transitioning.

Each method of addressing is handled within its own function. The decision to
wrap the execution of each method within a function was made to present neat
boundaries for measuring execution time of each method. An example run is
shown:

Figure 2: Runtime profiling the state machine

The compiler is usually able to optimize out any static calculations through
static analysis, and each function will likely be inlined in -O3 mode, thus, this
method provides consistent measurements of the relevant part of each function:
writing bits to the specified addresses.

Results
Table 1: Comparing performance of each method and optimization
improvements

Method Time (-O0) Time (-O3) % Improvement
Masking 0.510us 0.120us 76.4%
BitBand() function 0.180us 0.040us 77.8%
Direct Bit Banding 1.470us 0.250us 82.9%

Masking and direct bit banding offer measurably slower execution once results
are normalized. Since they are writing to the GPIO interfaces first, the internal
logic of the chip responsible for controlling GPIO is invoked, adding a runtime
penalty. The function method bypasses this extraneous GPIO logic – writing
directly to the register – and thus offers the best performance.

2

All methods receive a large, yet roughly similar improvement when compiled
with optimizations, which is to be expected.

Appendix
/* bitband.c*/

#include "LPC17xx.h"
#include "GLCD.h"

#include <stdio.h>

//------- ITM Stimulus Port definitions for printf ------------------- //
#define ITM_Port8(n) (*((volatile unsigned char *)(0xE0000000+4*n)))
#define ITM_Port16(n) (*((volatile unsigned short*)(0xE0000000+4*n)))
#define ITM_Port32(n) (*((volatile unsigned long *)(0xE0000000+4*n)))

#define DEMCR (*((volatile unsigned long *)(0xE000EDFC)))
#define TRCENA 0x01000000

struct __FILE { int handle; };
FILE __stdout;
FILE __stdin;

int fputc(int ch, FILE *f) {
if (DEMCR & TRCENA) {

while (ITM_Port32(0) == 0);
ITM_Port8(0) = ch;

}
return(ch);

}
//--- //

#define __USE_LCD 0 // Uncomment to use the LCD
#define __FI 1 // Font index 16x24

// Bit Band Macros used to calculate the alias address at run time
#define ADDRESS(x) (*((volatile unsigned long *)(x)))
#define BitBand(x, y) ADDRESS(((unsigned long)(x) & 0xF0000000) | 0x02000000 |(((unsigned long)(x) & 0x000FFFFF) << 5) | ((y) << 2))

#ifdef __USE_LCD
static inline void method2lcd(unsigned char* msg) {

GLCD_DisplayString(6, 8, __FI, msg);
}
#endif

3

// Simple register masking
static void method_mask(){

LPC_GPIO1->FIOPIN ^= (1 << 28);
LPC_GPIO2->FIOPIN ^= (1 << 2);

}

// Define pointer with bitband method
static void method_function(){

volatile unsigned long* bit1 = &BitBand(&LPC_GPIO1->FIOPIN, 29);
volatile unsigned long* bit2 = &BitBand(&LPC_GPIO2->FIOPIN, 3);

static _Bool state = 1;

*bit1 = *bit2 = state;
state = !state;

}

// Raw bitbanding
static void method_bitbanding() {

const size_t addr1 = 0x22000000 + (0x2009C034 * 32UL) + (31 * 4);
const size_t addr2 = 0x22000000 + (0x2009C054 * 32UL) + (4 * 4);

static _Bool state = 1;

ADDRESS(addr1) = ADDRESS(addr2) = state;
state = !state;

}

void SysTick_Handler(void) {
static size_t tick = 0;
static size_t state = 0;

if (tick++ < 500) { return; }
tick = 0;

// Uses MOVS instruction to implement jump table
if (state == 0) { method_mask(); state++; }
else if (state == 1) { method_function(); state++; }
else if (state == 2) { method_bitbanding(); state = 0; }

#ifdef __USE_LCD
if (state == 1) { method2lcd("MASK "); }
else if (state == 2) { method2lcd("FUNCTION"); }
else if (state == 0) { method2lcd("BITBAND "); }
#endif

4

}

int main(void){
LPC_SC->PCONP |= (1 << 15); /* enable power to GPIO & IOCON */
LPC_GPIO1->FIODIR |= 0xB0000000; /* LEDs on PORT1 are output */
LPC_GPIO2->FIODIR |= 0x0000007C; /* LEDs on PORT2 are output */

// Configure SysTick with interrupt and internal clock source
ADDRESS(0xE000E010) = (1 << 0) | (1 << 1) | (1 << 2);

// Run handler every 1ms
ADDRESS(0xE000E014) = 99999;

#ifdef __USE_LCD
GLCD_Init(); /* Initialize graphical LCD (if enabled */

GLCD_Clear(White); /* Clear graphical LCD display */
GLCD_SetBackColor(Blue);
GLCD_SetTextColor(Yellow);
GLCD_DisplayString(0, 0, __FI, " COE718 Lab 2 ");
GLCD_SetTextColor(White);
GLCD_DisplayString(1, 0, __FI, " bitband.c ");
GLCD_DisplayString(2, 0, __FI, " Watch the LEDs! ");
GLCD_SetBackColor(White);
GLCD_SetTextColor(Blue);
GLCD_DisplayString(6, 0, __FI, "Method:");
#endif

// Let SysTick callback run in background
while (1) {}

}

5

	Objective
	Implementation
	Software
	Hardware

	Assignment
	Results
	Appendix

